Cost Effectiveness of Mammography Screening: Today and the Future

Irene OL Wong, Gabriel M Leung
Department of Community Medicine and School of Public Health,
Li Ka Shing Faculty of Medicine,
The University of Hong Kong

24 September 2007

Acknowledgments

• This work has received financial support from the Health and Health Services Research Fund, Health, Welfare and Food Bureau, Government of the Hong Kong SAR (grant no. 03040751).
The general economy and the health care economy…Parkinson’s Law*

*Volume will expand to fill available capacity

**Proportion of women aged 35 or over who undergo regular mammographic screening
We used a statistical model to explain and attribute the different risks of breast cancer

Factors affecting a group of people born around the same time

- Birth cohort
 - Birth weight
 - Early lifestyle factors

Temporal effects which apply to all people at a certain point in time

- Period
 - Environment
 - Lifestyle factors

Breast cancer risk

Factors affecting breast cancer risk:

- Birth cohort:
 - Birth weight
 - Early lifestyle factors

- Period:
 - Environment
 - Lifestyle factors

- Age

Dao et al. 2011

We observed a statistically significant difference in age-standardized rates of breast cancer per 100,000 women from 1976 to 2016.

The model predicts a continued average increase of 1.1% per year over the next 15 years.

Observed and forecasted incidence

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Crude rate</td>
<td>28.6</td>
<td>34.5</td>
<td>46.7</td>
<td>64.6</td>
<td>-</td>
</tr>
<tr>
<td>Age adjusted rate</td>
<td>32.5</td>
<td>35.8</td>
<td>41.2</td>
<td>48.2</td>
<td>54.3</td>
</tr>
</tbody>
</table>

* *Notes: Data are based on Hong Kong’s most recently available figures in 2004 from the Hong Kong Cancer Registry.*
Age, period and cohort effects – what do they show?

Ref: Wong et al. Int J Cancer. 2007;121:1556-63

What do rising disease rates mean for population-based mass screening?

- We used a state-transition Markov Model to simulate mammography screening, diagnosis and treatment in a hypothetical cohort of local women aged 40 or older
 - undergoing mammography screening every 2 years:
 - beginning at 40 or 50 and ending at 69 or 79 years
 - without screening (controls)
- We compared their clinical outcomes in an incremental cost-effectiveness analysis
- We modeled the benefit of mammography by assuming a stage shift (i.e. cancers in screened women were more likely to be diagnosed at an earlier stage)
Decision Model Framework

Data Sources
- HK CR
- C&SD
- Meta analysis
- Observational
- Routine
- Expert

Model Inputs
- Clinical effect
- Benefits
- Quality-adjusted life years
- Cost

Decision model
- Screen every 2 years, 50 - 69 y
- Screen every 2 years, 40 - 49 y
- No screen
- Died

Well
- Breast cancer
- Ductal carcinoma in situ

Die from Breast Cancer

Die from Other causes

Stage distribution in unscreened group

Stage distribution in screened group

Well
- Breast Cancer AJCC Stage I
- Breast Cancer AJCC Stage II
- Breast Cancer AJCC Stage III
- Breast Cancer AJCC Stage IV

Ductal Carcinoma In situ
Effects of future changes in breast cancer incidence on mammography cost effectiveness

<table>
<thead>
<tr>
<th>Year</th>
<th>ICER, HK$ / QALY saved</th>
<th>Screen age 40-69 vs no screen</th>
</tr>
</thead>
<tbody>
<tr>
<td>2002 (ref)</td>
<td>480,480</td>
<td>480,480</td>
</tr>
<tr>
<td>2006</td>
<td>458,640</td>
<td></td>
</tr>
<tr>
<td>2011</td>
<td>433,680</td>
<td></td>
</tr>
<tr>
<td>2016</td>
<td>424,320</td>
<td></td>
</tr>
</tbody>
</table>

ICER decreases because benefit of screening will increase as Br CA incidence increase.