Real-time nowcast and forecast on the extent of the Wuhan CoV outbreak, domestic and international spread

Professors Gabriel Leung and Joseph Wu

Media Conference January 21, 2020

LKS Faculty of Medicine The University of Hong Kong 香港大學李嘉誠醫學院

WHO Collaborating Centre for Infectious Disease Epidemiology and Control

Nowcasting/backcasting

Estimating the number of cases in Wuhan from international case exportation (2 in Thailand, 1 in Japan and 1 in South Korea) 1 Jan – 17 Jan (the most recent onset date of international case exports)

Wuhan is Central China's transportation hub

Estimation of domestic exports by train, air and road 1 Jan – 17 Jan

Using posterior modes as point estimates

Estimation of domestic exports by train, air and road 1 Jan – 17 Jan

Using posterior means as point estimates

Forecasting

Forecasting international exports during the weeks before and after the first day of Spring Festival

25% sensitivity 50% sensitivity 8.0 75% sensitivity Probability 0.6 0.4 0.2 0 2 3 5 6 7 8 0 1 4 Total no. of international case exportation

Reduction in Screening No. of export No. of export (Mode) sensitivity (Mean) FOI 60% 50% 1 (0-4) 1.29 (0-4) 75% 50% 0 (0-3) 0.81 (0-3) 90% 0 (0-2) 0.32 (0-2) 50% 75% 25% 0 (0-3) 0.91 (0-3) 75% 0 (0-3) 0.81 (0-3) 50% 75% 0 (0-3) 0.71 (0-3) 75%

Exit screening in Tianhe Airport and major train stations started on 15 Jan in Wuhan

Different international ports have also recently started or enhanced pre-existing entry screening

International outbound air travel from Wuhan

City	Monthly no. of air passengers in CNY 2019
Bangkok	16202
Hong Kong*	7531
Seoul	5982
Singapore	5661
Tokyo	5269
Taipei	5261
Kota Kinabalu	4531
Phuket	4411
Macau	3731
Ho Chi Minh City	3256
Kaohsiung	2718
Osaka	2636
Sydney	2504
Denpasar-Bali	2432
Phnom Penh	2000
London	1924
Kuala Lumpur	1902
Melbourne	1898
Chiang Mai	1816
Dubai	1799

*Due to the ongoing social unrest since June 2019, we parameterized the models with actual air passenger volume based on local estimates

Forecasting domestic exports during the weeks before and after the first day of Spring Festival

Reduction in FOI = 75% Screening sensitivity = 50%

City	No. of export (Mode)	No. of export (Mean)
Beijing	2 (0-7)	2.56 (0-7)
Shanghai	2 (0-7)	2.47 (0-7)
Chongqing	2 (0-9)	3.35 (0-9)
Guangzhou	2 (0-9)	3.47 (0-9)
Shenzhen	2 (0-8)	2.78 (0-8)
Chengdu	0 (0-4)	1.04 (0-4)
Xi'an	0 (0-4)	1.07 (0-4)
Hangzhou	0 (0-4)	1.19 (0-4)
Guiyang	0 (0-2)	0.33 (0-2)
Nanning	0 (0-2)	0.46 (0-2)
Fuzhou	0 (0-3)	0.89 (0-3)
Tianjin	0 (0-2)	0.44 (0-2)
Xiamen	0 (0-3)	0.57 (0-3)
Kunming	0 (0-2)	0.36 (0-2)
Ningbo	0 (0-3)	0.57 (0-3)
Wenzhou	0 (0-2)	0.55 (0-2)
Qingdao	0 (0-1)	0.14 (0-1)
Quanzhou	0 (0-2)	0.47 (0-2)
Haikou	0 (0-1)	0.08 (0-1)
Lanzhou	0 (0-1)	0.11 (0-1)
Hong Kong	0 (0-1)	0.03 (0-1)

In case of superspreading events (SSEs)

Final size estimation for superspreading clusters

Case study of SARS SSE in HK

Dataset [Download data sample] Explanation Column 1) Patient reference number Column 2) Date of symptom onset Column 3) Date of hospital admission Column 4) Superspreading cluster index	Choose File No file chosen	A	120 100 - 80 -	Onsets Cases from Amoy Gardens Cases not from Amoy Gardens
Date of exposure (mm/dd/yyyy) [Date of exposure for data sample is 12/07/2019] Guess of cases that will be shown afterwards (integer)	12/07/2019		40 -	
Guess of mean incubation period (days) Guess of standard deviation of the incubation periods (days)	100 7 2	В	120 100	Admissions
Guess of mean delay from symptom onset to hospital admission (days)	5		80 60 -	
Guess of standard deviation of the delay from symptom onset to hospital admission (days) Mean incubation period from previous outbreaks (days)	2		40 20 -	
Standard deviation of incubation period from previous outbreaks (days)	4.2	с	400	
Mean delay from symptom onset to hospital admission from previous outbreaks (days)	4.9		300 - 250 -	
Standard deviation of the delay from symptom onset to hospital admission from previous outbreaks (days)	6.6		200 - 150 - 100 - 50 -	
			15/02	02/2003 01/03/2003 15/03/2003 01/04/2003 15/04/2003

Critical issue of case definitions

National CDC:

Suspected

- Fever (≥38)
- Radiographic findings of pneumonia or acute respiratory distress syndrome
- Reduced or normal white blood cells; reduced lymphocytes subsets counts
- No improvement or deteriorate after 3-5 days of antibiotics treatment

Probable

• Suspected + Epidemiologic link/history

Confirmed

- 1st case in the province: Probable + City and provincial and national CDC's RT-PCR
- 2nd case or after: Probable + City and provincial CDC's RT-PCR

Estimation by ICL/HKU:

Symptomatic cases who could be detected by temperature screening at international borders and/or with disease severity of a level requiring hospitalization plus travel history to Wuhan.

Assumptions of modelling studies

- Case definitions
- Assumptions about force of infection (dependent on effectiveness of control measures so far implemented)
- Assumption of sensitivity of exit and entry screening in detecting symptomatic cases with fever
- Assumption that Wuhan remains the only epidemic centre
- Assumption of no superspreading events in Wuhan or elsewhere with confirmed cases
- Assumption of robust surveillance and high degree of alertness to detect potential cases everywhere